Recapitulation of Fibromatosis Nodule by Multipotential Stem Cells in Immunodeficient Mice
نویسندگان
چکیده
Musculoskeletal fibromatosis remains a disease of unknown etiology. Surgical excision is the standard of care, but the recurrence rate remains high. Superficial fibromatosis typically presents as subcutaneous nodules caused by rapid myofibroblast proliferation followed by slow involution to dense acellular fibrosis. In this study, we demonstrate that fibromatosis stem cells (FSCs) can be isolated from palmar nodules but not from cord or normal palm tissues. We found that FSCs express surface markers such as CD29, CD44, CD73, CD90, CD105, and CD166 but do not express CD34, CD45, or CD133. We also found that FSCs are capable of expanding up to 20 passages, that these cells include myofibroblasts, osteoblasts, adipocytes, chondrocytes, hepatocytes, and neural cells, and that these cells possess multipotentiality to develop into the three germ layer cells. When implanted beneath the dorsal skin of nude mice, FSCs recapitulated human fibromatosis nodules. Two weeks after implantation, the cells expressed immunodiagnostic markers for myofibroblasts such as α-smooth muscle actin and type III collagen. Two months after implantation, there were fewer myofibroblasts and type I collagen became evident. Treatment with the antifibrogenic compound Trichostatin A (TSA) inhibited the proliferation and differentiation of FSCs in vitro. Treatment with TSA before or after implantation blocked formation of fibromatosis nodules. These results suggest that FSCs are the cellular origin of fibromatosis and that these cells may provide a promising model for developing new therapeutic interventions.
منابع مشابه
Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice.
Infantile hemangioma is a benign endothelial tumor composed of disorganized blood vessels. It exhibits a unique life cycle of rapid postnatal growth followed by slow regression to a fibrofatty residuum. Here, we have reported the isolation of multipotential stem cells from hemangioma tissue that give rise to hemangioma-like lesions in immunodeficient mice. Cells were isolated based on expressio...
متن کاملReconstructionof Human Mandibular Continuity Defects with Allogenic Scaffold and Autologousmarrow Mesenchymal Stem Cells
Background Mandibular continuity defects occur after tumor resection, maxillofacial injury, or osteomyelitis. Despite the current availability of a plethora of treatment modalities, bone substitutes, and various clinical adjuncts, an exact reconstructive recapitulation of large bony defects continues to be beyond reach. In this clinical pilot study, we report a novel method for reconstruction ...
متن کاملBiological characteristics of Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs) and its therapeutic applications in regenerative medicine
Stem cells isolated from human exfoliated deciduous teeth (SHEDs) are multipotent mesenchymal stem cells that are isolated from dental pulp tissues. These cells have a high proliferative capacity, multipotential ability, immunomodulatory function, and minimal risk of oncogenesis. Recent studies have shown that SHEDs are a feasible cell source for cell therapy and regenerative medicine.
متن کاملRecombinant AAV2 transduction of primitive human hematopoietic stem cells capable of serial engraftment in immune-deficient mice.
A recombinant AAV2 (rAAV2) vector encoding antisense RNA to HIV-1 transactivating region (TAR) was evaluated for transduction of human cord blood CD34+CD38- hematopoietic stem cells (HSC) capable of serial engraftment in nonobese diabetic (NOD)/severe combined immunodeficient (SCID) mice. Results revealed long-term multilineage marking in primary and secondary recipients, and significantly, an ...
متن کاملتاثیر رتینوئیک اسید در تمایز سلّولهای بنیادی مزانشیمال بافت چربی به سلّولهای زایا
Background: Recent publications regarding the differentiation of stem cells to germ cells have motivated researchers to make new approaches in infertility. In vitro production of germ cells improves the understanding of differentiation process of male and female germ cells. Since using embryonic stem cells for this purpose has been associated with tumorogenesis and ethical criticisms, the men...
متن کامل